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ABSTRACT _.

At the end of one year the program is on schedule. EFG ribbon growth

system JPL No. 2 is being used to perform meaningful growth rate and ribbon

thickness experiments. The new, wide ribbon growth system is in operation. A

theoretical study of stresses in ribbons is reported. EFG ribbons have been

observed to exhibit a characteristic defect structure which is orientation dependent

in the early stages of growth.

"This report contains information prepared by Mobil Tyco Solar Energy Corporation
under JPL subcontract. Its content is not necessarily endorsed by the Jet Propulsion
Laboratory, California Institute of Technology, National Aeronautics and Space
Administration or the U.S. Energy Research and Development Administration, Divi-
sion of Solar Energy."
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I. INTRODUCTION

The objectives of this program are to produce at high speed, thin, wide sheets

of silicon of the quality needed to fabricate 10% efficient solar cells. This is part of

a total Mobil Tyco Solar Energy Corporation objective to produce silicon ribbon for
¢

solar cells at a cost which will allow their wide scale use for generation of electrical

power. The edge-defined, film-fed growth process was developed for the commercial

production of continuotis shaped single crystals of sapphire from tile melt and was

applied to growth of silicon ribbon for solar cells partly under NSF Grant GI37067X

via Harvard University, JPL Contract 953365, and under NSF Grant GI43873. The

basic fe,asibility of the application of EFG to the growth of silicon ribbon has been

proven and the theoretical base for extending the technique to the efficient production

of sheet silicon has been established.

The two major tasks in this program to produce large area silicon shee by

EFG are: the growth of thin ribbon at high speeds in existing apparatus an i the

design and construction of a system for the growth of wide ribbons. These two task_

will be combined toward the end of the program to achieve the ultimate program goal.

Concurrent with the develop_me._t of the growth process and ribbon growtt', apparatus

will be material and solar cell characterization programs and theoretical studies of

various aspects of EFG silicon sheet growth including melt replenishment, the effect

, of heft and aspects of heat flow in the EFG silicon growth system,

At the end of one year the program is on schedule. Work is progressing along

several fronts, Details of the progress achieved in the areas of thin/fast growth,

"wide" system engineering and assembly, characterization, and theoretical studies

follow tn the Technical Discussion.

!
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II. TECHNICAL DISCUSSION

jb,.

A. Apparatus

One major task of this progrr m is to grow thin t~0.1 mm) silicon ribbon at

high growth rates ( 7.5 cm/min). The_e goals are being pursued in a resistance

heated EFG system designated JPL No. 2 (Fig. 1). The system was modified at the

beginning of this program to incorporate all current state-of-the-art EFG silicon

ribbon technology. This modification included planning and building of a variable

top heater assembly, the design of the power supplies and controller for the new top

heater assembly, the design of specific crucible holder parts and an improved

crucible support pedestal assembly ar-d a general debugging, rewiring and system

alignment effort.

The final configuration of the furnace chamber is virtually indistinguishable

" from the growth system previously described and illustrated. (1) The puller is a
i

ballscrew driven fixed stroke machine capable of pulling ribbon at up to 12.'/cm/min.

The furnace itself is comprised of a vertical cylindrical graphite crucible heating

dement insulated with concentric carbon and graphite felt heat shields, Die heaters

or 'trimmers' include ribbon face heaters wired in parallel and end heaters con-

trolled independent of the face heaters and independent ot one another, Molybdenum

and graphite shields and the graphite fiberform package complete the top insulation.

Real control of ribbon spreading and left-right temperature balance is achieved with

the end heaters. All of this is packaged in a water-jacketed stainless steel furnace

chamber.

To achieve the thermal gradients necessary to grow low stress ribbons at

high growth rates, an afterheater is currently being designed for this growth system.

The layout is nearly complete. The heater will be flexible to i_rovtde various gradients

as desired.

1977005572-010
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l:ig. 1. "Fhin fast' EFG ,:abon growth ,qvstcm, JPI, No. 2 (from Rcf. 1).
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A new ribbon growth system, designated JPL No. 1 is deslgmxt to have the

cap=c__:y to produce 125 cm long, 7.5 cm wide, 0.1 mm thick silicon ribbon at speeds

of up to 7.5 cm/min. Experience with JPL No. 2 has contributed svbstantially to the

design of JPL No. I. We expect that new thin fast/gro_h technolo(Ay developed on
t

JPL No. 2 will contribute to experiment planning on the new macHne as v,,ell.

JPL No. 1 was operational before the end of this reportirg period (F" _. 2).

It is comprised of three elements; the p, ller, the furnace char._er, and the

electrical system. The puller is a 102 cm fixed stroke dovetailed slid ,ruth saddles
am.J,

"_hich are ballscrew driven. The screw is driven by a close_ _ loop controlled torque

motor. The furnace chamber is a horizontal, water-jacket,=d, stainless steel (Fig. 3)

can containing concentric semicylindrical molybdenum and tungsten heat shields (Fig.

4), high pui"ity graphite heating element and crucible holder', and trough sbaped quartz

crucibles (Fig. 5a). The horizontal furnace geometry was selected so that the geom-

etry of rye physical system and of the thermal gradients more closely approximate the

geomerry of the product. The power is supplied to the main heating elemer.t from an

SCR controlled 25 kW transformer. Independently controlled die heater/trimmers

and an active afterheater are powered by an additional 10 kW supply (Fig. 5b).

Though simple and dependable, the resulting system should be flexihle enough

to accommodate the host of experimental variables including 2.5 to 7.5 cm wide ribbon

growth at speeds up to 7.5 cm/min as well as supplementary studies including contin-

uous melt replenishment.

The JPL No. 1 design and procurement efforts of the first three quarters of

this year have been reported. During the last quarter all the major components were

received and a_sembled. Details and debugging have been attended to. A seed holder

was designed (Fig. 6a), radiation shields for the windows, water-cooling for top and

bottom flanges and puller slide protection circuits have been designed and installed.

SCR firing circuit and teu_perature controller malfunction have been repaired. The

main hea_tng element has been heated up to 1800°C. Heat shield warping observed has

been minimized by adding tungsten nuts and bolts and spacers. The die holder/

gradient controlling cartridge was assembled (Fig. 6b).

The system has been run up past 1400°C repeatedly. Temperau]res inside

the shield package are essentially uniform. Except for the ends of the molybdenum

bolts, the outside of the shield package never exceeds ~ 350°C. A 300 g silicon

charge was melted using less than 30% of the available 25 kW _wer. The third grgwth

attempt yielded ribbon ~4.6 cm wide using less than 15 kW in the main heater, die

heater_, and afterheaters total.

5
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Fig. 2. 'Wide ribbon' growth system JPL No. 1 showing _-hamber, slide saddles,
and torque motor drive,

6
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Fig. 4. 3PL No. 1 growth ch,mlbcr ,_howing bottom and top molybdenum shield
sets.
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(a)

Fig. 5. (a) Quartz 'trough shaped' crucible and graphite crucible holder.
(b) JPL No. 1 control console containing closed loop motor speed,
afterheater, and die heater controls and power supply and main
heater cortro),
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(b)

i Fig. 6. (a) x/y/_ pull head with microswitch push and pull protection.
(b) Die holder-thermal trimmer cartridge.

10
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B. Thermal Profiles and Thermal Stresses in the Growth of Ribbon Cry.qtals

1. Introduction

Attempts to grow ribbon-shaped crystals of silicon from the melt by

techniques such as EFG or laser recrystallization have encountered problems with

residual stresses in the grown crystals. Experience with EFG silicon ribbon growth

has indicated that the stress problem became worse as faster growth rates and

larger ribbon widths were sought. Since increasing the growth rate and ribbon width

are of primary importance in developing the EFG process to attain its full potential,

we have undertaken to consider the origin of the residual stresses in ribbon-shaped

crystals and to identify the parameters that determine their magnitude. The analysis

described here, of course, applies equally to other sheet growth techniques of silicon

from the melt such as the Inverted Stepanov technique, the Ribbon-to-Ribbon process

by laser recrystallization, and web-denaritic growth; research on these techniques

(as well as on EFG ribbon growth described here) is being currently sponsored by

the Jet Propulsion Laboratory. _2"
)

An identification of the origin of the residual stresses is made in Section II.B.2;

it is indicated that the stresses result from the plastic deformation which the crystals

undergo at the high temperatures. The plastic deformation, in turn, is caused by

the thermal stresses which arise as a result of non-uniform temperature distributions

in the ribbon. The problem of uhermai profiles in ribbon-shaped crystals is con-

sidered in Section II.B.3. The most useful approach to determining the temperature dis-

tribution in the ribbon turns out to be numerical modelling on the computer; the model

permits close interaction between the theoretical calculations and the design of

experimental hardware. In Section II.B.4, we apply thermoelast__city theory to predict

the effects of the thermal profile on the thermal stresses in ribbon-shaped crystals.

Of basic concern here are the two interrelated problems: one is to minimize the

extent of plastic deformation and, therefore, the strain induced imperfections, the

other is to reduce, to a tolerable ievel, the residual elastic stress in the crystal

when it reaches room temperature. Various experimental approaches which are

being undertaken to solve the thermal stress problem in EFG ribbon growth are dis-

cussed in Section II.B.4.d; a recent strategy which can lead to a minimization of both the

plastic strain and the residual stress is also described. An oral version of the

following text was presented (3)"at a seminar sponsored by the Jet Propulsion Labora-

tory.
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2. Origin of the residual stress

It is worthwhile to review here briefly some basic concepts concerning

residual stress in crystalline materials. Residual stress is a stress system sati_.fying

internal equilibrium with no external loads or temperature gradients; it is accom-

panied by an elastic strain distribution in the material. On a microscopic scale,

residual stress is associated with the microstructure of the material such as dislo-

cations, inclusions, deformation twins, and dislocation pile-ups; these residual

stresses are short range, but the defects play a fundamental role in plastic deforma-

tion and in fracture of the material and irt its electrical properties. Residual stresses

on a macroscopic scale can be caused by mechanical effects (e.g., forced alignment of

parts, or loads causing non-uniform plasl:ic flow or creep), by thermal effects (e.g.,

thermal stress due to non-uniform changes in temparature causing plastic flow), and

by chemical or compositional effects. The present analysis is concerned with the

thermal stress in the growth of ribbon-shaped crystals, i.e., with the plastic strain

induced imperfections and the residual stress in the grown crystal. Residual stresses

can be generally relieved by small amount3 of relaxation or plastic strain; if present,

the stresses can cause or promote fracture, buckling, plastic flow and creep. Resi-

dual stress in silicon can be measured by X-rays or birefringence, or, more typically,

by observing the strain during removal of material (e.g., by scribing and splitting

the ribbon crystals and measuring the curvature after splitting (4) - see Fig. '/b).

The residual stresses we have measul ed in EFG silicon ribbons by such

splitting technique were generally in the rant:e 0 to 30, 000 psi (the fracture stress

of silicon at room temperature is approximately 80, 000 psi _5)"). Cutting into solar

cell blanks is generally difficult if the stress exceeds ,-5, 000 psi; the uniformity

of ribbon thickness also affects the ease of cutting. Spontaneous shattering of the

ribbon during growth or handling, or excessiw; fracture during scribing is probably

indicative of residual stresses in excess of 80, 000 psi.

From the observed shapes of the split or buckled ribbons (see Fig. 7), we

can already d,'Juce some information on the elastic strain in the material. In

essence, the ribbon is longer in a central longitudinal section than along the edges;

on a microscopic scale, the length w_:iation across the ribbon width is the result

of extra half-planes of dislocations. A simple calculation of the dislocation dc nsity
i

for a typical stress of 15,000 psi (which corresponds to a split of 0.$2 in. over a
-2

ribbon length of 20 in. in a 1 in. wid ,_ ribbon) yields a density of 8 × 104 cm . In

12
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(a)

(b)

Fig. 7. (a) Portion of buckled ribbon showing ripples on ribbon surface.
(b) Portion of scribed and split ribbon with a residual stress
of ~'/000 psi.

: i
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the analysis of the thcrmal stress in thc ribbon, we will point out how the plastic

deformation during growth, in response to the thermal stress, can lead to the in-

crease in the length at the ribbon center.

The basic question we must first consider is: what is the origin of the resid-

ual stresses in a non-uniform temperature gradient, and what are the parameters

that determine their magnitude. When the ribbon is cooled from the melting point

to room temperature, each portion or element of the ribbon will contract propor-

tional to its own temperature fall. If adjacent elements contract diff_-ently, they

restrain each other's conn'action, and hence stresses must result. External con- "" iwill

straints to thermal contraction can also cause thermal stress, but this does not

apply to the crystal growth situations treated here.

The effect of the temperature distribution along the ribbon length (or the

"vertical" temperature profile) on the thermal stress is illustrated in Fig. 8. We

consider the ribbon to consist of a number of narrower strips, as shown in Fig. 8a.

If the ribbon is at a uniform temper_-cure, the strips are parallel-sided (Fig. 8a)

and there is no stress. If the ribbon is in a uniform temperature gradient, each

strip tapers uniformly as a result of thermal contraction (assuming, of course, that

the thermal expansion coefficient is independent of temperature). Figure 8b shows

this, grossly exaggerated. Again, adjacent strips conform to each other without

bending. Therefore, the ribbon is stress free, and will remain stress free as long

as it is in the same temperature gradient. If the temperature gradient becomes non-

uniform (i.e., non-hnear), then the shape of each strip, if it were not attached to its

neighbors, would be as sho_aa in Fig. 8c. It is apparent that adjacent strips no longer

conform to each other without bending; the strips can be made to fit by lateral defor-

mation in their own plane, thus thermal stresses must arise. It is also apparent that

the stress will be proportional to the curvature or bending that must be imposed to

fit the strips together. The curvature is, of course, proportional to the rate of change

of the temperature gradient, i.e., dg"T/dx 9", and also increases with increasing ribbon

width, The explicit dependence of the thermal stress components on the derivatives

ot the vertical temperature profile T(x) and on the riobon width will be derived in a

later section. The important point to realize from this qualitative argument is that,

in a realistic crystal growth situation, it is impossible to cool the ribbon to room

temperature without developing stress in the ribbon at some point.

y

14
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Fig. 8. Schematic of thermal expansion of adjacent longitudinal
elements of the ribbon: (a) Ribbon at a uniform temperature;
(b) Ribbon with linear temperature profile; {c) Ribbon with
non-linear temperature profile_ (d) Schematic of temperature
profiles for cases (a), (b) and (c).
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3. Thc_rmal profiles in the growth of ribbon crystals

a. Analytic calculation of thermal profile

• The first problem is to determine the temperature distribution in

the ribbon under a variety of growth conditions. Extensive theoretical work was per-

formed in a recently concluded NSF program t6)_ to obtain analytical solutions for the

vertical temperature profile and to relate the ribbon thickness to the gradient in the

meniscus and the growth rate. Numerical analyses of the horizontal (i.e., along the
r

ribbon width) and transverse (i.e., through the ribbon thickness) temperature profiles

were also carried out.

,, An analytic expression for the gradient in the vertical profile in the ribbon is

given by the following: (7)

d"_" - t km Tm " T6 " T2 1 + 4 In (T/T o) . (I)

Here we have assumed that the heat flow is one-dimensional (i.e., along the vertical

or x-direction), the ribbon width is much greater than the ribbon thickness (t), the

i thermal conductivity is proportional to l/T, and the radiating environment seen

by the ribbon is at a uniform temperature To.t Also, the heat carried by the moving
ribbon has been neglected in calculating the steady-state temperature profile. The

i vertical temperature profile can be readily obtained by numerical integration of

Eq. (I) with T(0)= T m

Equation ( 1 ), in conjunction with a steady-state heat balance condition at

the solid-liquid interface, has been useful in relating the ribbon thickness to the

growth rate and the gradient in the liquid; the effective environment temperature

has been determined h'om correlations of experiment and theory. Other than

describing the gradieat at the interface, however, ".his analytic approach is insuffi-

cient to describe the vertical profile in the ribbon to the extent that t,seful determina =

1' The other terms in the above expression are the Ste.fan-Boltzmann constant e, the
emissivity of the ribbon surface c, and the thermal conductivity of solid silicon

km at the melting temperature Tm.

i
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tions of the thermal stre,q,qe,_ can be made. The main problems are the oversimplifi-

cation of the radiating environment and the assumption of a stationary ribbon in the

analytic calculations. The inclusion of a more realistic thermal environment (which

can also be readily correlated to the crystal growth setup) and of the specific heat

transport in the ribbon into the solution mast perforce involve numerical analysis on

the computer. The remainder of this section describes a computer model developed on

a previous Mobil Tyco funded program, and examines the predictions of this model re-

lating to the current program's objectives of fast, wide and stress-free ribbon growth.

b. Numerical calculation of thermal profile

Figure 9a depicts schematically the geometry used in the numerical

calculation of the temperature profile. Again, only one-Oimensional heat flow is con-

sidered, i.e., the profile along the vertical (or crystal pulling) axis of the ribbon

is calculated. The afterheater block dimensions x B (height above the interface) and

YB (distance from ribbon _urface), and the environment temperatures below, along

and above the block are variable; a maximum of 10 temperature values can be speci-

fied along the afterheater. "r'he steady-state temperature ts calculated at 40 equally

spaced incremental points along the ribbon; the length L, thickness and growth rate

of the ribbon are variables in the program.

The model considers conductive and convective heat transport in the ribbon,

and radiative and convective cooling at the ribbon surface. The heat balance condi-

tion for the tth element in the ribbon is given by (see Fig. 9b):

I- 1

-2_x(w+t) .[QiRAD+QiCONV/ =0 • (2)

In the above expression, w is the ribbon width, C is the specific heat of solid silicon,

Vg is the crystal growth rate, and kt = 9 km Tm/(T t + Ti.1 ) is tile average thermal
conductivity for the tth and (t-1)th elements. The radiative heat loss from the ith

element (Q RAD) is a function of Tt and ¢, and of the emissivities, _:emperatures

and angle factors of the surfaces which comprise the environment (i.e., the after-

heater block). The convective heat loss from the t th element is given by QiCONV =

h (T4 .."T), where h - Nu • k./YD is the heat transfer coefficient, T_ is the effective

gas temperature at the ith element (assumed to be intermediate to ;i and the after-

17
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Afterheater block (a)

4-
Y

X

B _ riboon

die

t+2

T! +1
(QCOND QSH)

• _ + i, out

A1i+l "_-_ _ Qi CONV (b),. • . _ Qt RAD_ i
"I

_l"""d,,..,,.,_ (QCOI'JD +QStI)• i, tn

i-1 -------"

Fig. 9. (a) Schematic of thermal model used in the calculation of the
vertical temp( rature profile In the ribbon. (b) Heat flow

terms at the i a element In the ribbon tQCOND - conductive heat,
QSH - specific heat convection, QcoNV - gas convection heat
Joss, QRAD - radiative heat loss).
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heater temperature at that point), k is d_e thermal conductivity of the gas phase, tg
and Nu is the Nusselt number for the convective heat transfer. Based on some heat

transfer calculations, (9) a value of Nu = 6 has been used in irost of the calculations;

in essence, theheat loss is assumed to be ~6 times that by straight conduction through

, the gas. The convective heat is not actually ca.-tied away by the flowing gas; rather,

there is a heat exchange between the ribbon and t,,,- afterheater block at each point.

The Nusselt number is clearly an adjustable param,ater in *.he calculatu..,_; its

appropriate value for a given growth system should be obtainable from experimental

measures of the thermal profiles and comparison to theory.

The boundary conditions to the numerical calcu!att¢,ns are that the interface

temperature T(0) - Tin, and that the temperature at the cola end of the ribbon

T (L) = T e = constant. Fixing the cold-end temperature allows one to obtain a con-

verge.at solution more rapidly; the effects of Te on the vertical profile are readily

examined in the model. The numerical solution uses the Gauss-Seidel technique

with accelerated relaxation; a converged solution is found after approximately 100

iterations,

The output of the numerical calculations includes a graphical printout of the

temperature profile and a predlction of the maximum growth rate for the given

"experimental" conditions. The temperature values at the incremental points can

be directly input into a numerical program which calculates the thermal stress in

the ribbon. Some examples of the calculated profiles will be given in the following

to show the effects of specific heat transport in the ribbon and the effectiveness of

gas cooling of the ribbon surface.

c, Effect of specific heat transport

A significant refinement to the e._.rlier analysis (8' 7) which gave

,_ Eq. (1) has been the inclusion of the specific heat carried by th_ moving ribbon into

the numerical calculation of the vertical temperatu_'e profile. The effect of this term

on the thermal profile turns out to be quite important, as illustrated in Fig. 10. Fig.

10a shows the temperature distribution in a stationary (Vg = 0) ribbon 4 cm long, 0.025
cm (~ 10 mils) thick for radiation into a 0°K environment, whereas Fig. 10b is the steady-

)The temperature dependence of the gas thermal conductivity (e.g., Ref. 8) has been
accounted for in the calculations,
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state profile r,,r a ribbon growing at 0.1!7 cm,'sec ('-.2.76 in./mm). The latter rate

corresponds to the coodition where the gradient in the liquid is approximately zero,

and is therefore the maximum ribbon growth rate for a 0.025 cm thick ribbon. The

pre,ious theory,6," 7) which negleczs the convective heat transport predicts, on tin.

other hand, that the maximum growth rate is 0.146 cm/sec. Table I lists the va!ues

of the maximum growth rate as a function of ribbon thickness based on the earlier

theo.:y and on the current aumerical calculations. The latter values axe seen to be

approximately 20% lower in each case. The same result is obtained for cases where

tLe environment temperature is different from 0OK; the maximum growth rates based

on the therma_" profiles in the stationary _'ibbon (i.e., V = 0) are typically 10 to 20%
g

higher than the rates obtained from the actual profiles in the moving ribbon.

Table h Maximum Ribbon Growth Rate as a Function of Ribbon Thickness

t (Vg)max, cm/sec (Vg)max, cm/sec

(cm) (using Eq. (!6) in Ref. 7) (corrected value)*

0.01 0.231 0.179

0.02 0.163 0.130

0.025 0.146 0._17

0.03 0.133 0.107

0.04 0.116 0.094

0.05 0.103 0.084

*The corrected value is obtained by numerical solution of the steady-state tempera-
ture profile; the model includes the convective heat transport (i.e., specific heat)
by the moving ribbon. Radiation into a 0*K environment is assumed.

d. Effects of afterheater block and gas cooling

The effectiveness of the heat exchange between the ribbon surface

and the aft,_xheater block can be best _qustrated by some specific examples. Figure lla

shows schematically a typical "hot" afterheater block configuration. The hot portion of

the block (1 cm in length) has a linear temperature gradient from 1300*K to 1000*K;

the temperatures below and above the block are I300*K and 500°K, respectively. The
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Fig.11. Typicalexamplesofhot(a)andcold(b)afterheaterblocks.The
thermalenvironmentoftheribbonisdeterminedbythepositioningof
theblockwithrespecttotheribbonandthegrowtninterface,andby
thetemperaturevaluesbelow,alongandaboveblock,
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block is located 0.05 cm (~20 mils) from the ribbon surface on either side and

0.05 cm above the growth intezface. The temperature profile in a 0.025 cm thick

ribbon at zero _o_xh rate is shown in Fig. 12a for the case where heat exchange

between the ribbon and the afterheater is by radiaticn only (i.e., no gas cooling or

heating). Figure 12b sh6ws the profile for combined radiation and argon gas cooling.i

The tendency of the profile to be more linear within the block in the argon case is

readily apparent from the figures. From the zero growth rate profiles in Fig. 12,

one can obtain an estimate for the maximum growth rates in these systems (for a

0.025 cm thick ribbon). The values are found to be 2.36 in./min and 3.08 in./min

for the no-gas and argon cases, respectively; using helium as the heat exchange

medium, one obtains a maximum growth rate of 5.'/9 in./min (as explained earlier,

the actual .maximum rates are about 10 to 20% lower than the above values as a

result of the convective heat transport in the ribbon).

An example of a typical "cold" afterheater block is shown in Fig. llb. Here

the block is assumed to have a gradient of 240°K/cm over a 2.5 cm length. "lhe

block is located 0.25 cm above the growth interface and 0.1 cm from the ribbon sur-

face. Temperature values below and above block are 1300*K and 300*K, respectively.

The temperature profiles in a 0.025 cm thick ribbon are shov,aa in Figs. 13a and 13b

for no gas and helium, respectively. In the latter case, the profile in the ribbon is

seen to attain the linear profile in the block over the last 2 cm of the block. The maxi-

mum growth rates from these V = 0 profiles are estimated to be 2.'/0 in./mic.,g
3.20 in./min and 4.90 in./min for no gas, argon, and helium, respectively.

The important outcome of this numerical analysis is that we have a means

of manipulating the thermal profile within the ribbon, which is important insofar as

the control of the thermal strczqes. Clearly, there can be a direct correlation made

between these calculations and the design of the experimental hardware. The effects

of heat exchange between the ribbor, and the block _'ia a gas phase were demonstrated

by the above examples; means of controlling the profile by varying the gas compo-

sition, for example, are also apparent. From the growth rates predicted for the

afterheaters in Fig. 11, it is felt that the program objective of 3 in./min growth

rate should be readily achieved using relatively simple cooling designs. The numeri-

cal program allows one to consider trade-offs between the growth rate and the ther-

mal profile desired for low stress. Of course, the theoretical calculations must be

reinforced with experimental measures of growth rates, thermal profiles and the

boundary conditions which enter the thermal model.
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e. Horizontal and transverse temperature profiles

The analysis thus far has neglected gradients in temperature along

the ribbon width (i.e., the horizontal profile) and through the ribbon thickness (i.e.,

the transverse profile). Clearly, more heat is lost at the ribbon edges because

of the greater surface to volume ratio. Also, since h_t is lost at the ribbon sur-

face by radiation and convection, there must be a gradi ent through the ribbon thick-

ness. An analysts of the three-dimensional temperature distribution in the ribbon

was made on an earlier NSF program .(6) The calculations showed that the transverse

gradients and the horizontal gradients at thc ribbon edges were much smaller than

the gradients in the vertical tempe::.ture profile at a given point. For example,

the typical maximum temperature variatie_, across the ribbon thickness is ~2* to

5*; the thermal stress associar_t with this variation is much less than that which

results from the non-linear vertical profile. In a later section, we will show how

the horizontal temperature profile can be va ::-,edpurrosely along the entire width of

the ribbon in order to control the thermal stresses,

f. Linear vertical profile

Finally, a brief discussion is given here on the prospects of

obtaining a linear vertical profile in the ribbon which, according to the qualitative

analysis in Fig. 8 is expected te lead to a condition of no thermal stress. We consider

the element of volume between T. and Ti+ 1 < T. in Fig. 9b. Even if the element were

CONVI iRperfectly insulated (i.e., Q. = Q AD = 0), the gradient at Till would be less than

at Ti because of the 1/T dependence of the thermal conductivity. If additional heat is

lost by the element (by radiation or convection), d2T/dx 2 will be even mot _,positive.

Therefore, in order to obtain a linear gradient, heat must actually be put into each

element of volume (a small net heat input results from considering the specific heat

transport in the ribbon). This, of course, would limit the rate of growth as the con-

vective and radiative heat losses from the ribbon surface at the high temperatures

help to carry away the latent heat which originates at the interface. It is important to

bear in mind in designing the cooling/heating environment that a growth rate of 3 in./

mtn for a 0,09-5 cm thick ribbon requires a vertical gradient of ~9400*K/cm in the

ribbon at the growth interface. Clearly, a 1.inear gradient of this magnitude cannot be

maintained In practice over much of the ribbon length; basically, the quantity of heat

associated with this gradient cannot be transferred from the ribbon at the lower

t emperatur es.
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4. Thermal stresses in the _jrowth of ribbon crystals

This section summarizes the current status of the theoretical and ex-

perimental efforts relating to the thermal stress problem in EFG silicon ribbons. An

excellent description of the theoretical formalism of thermoelastic problems is

given in Chapter 8 of Ref. 10; the'efore, after presenting some gene"_.l remarks,

we proceed to describe here the methods of solution and results only for the ribbon-

shaped geometry of interest. First, we present an analytical solution for the ther-

mal stresses in the ribbon, and discuss the limitations of this solution. We then

describe a numerical method for calculating the stresses, and present the solutions

for some simple temperature distributions. Procedures are described for deter-

mining the plane and magnitude of the maximum shear stress at every point in the

ribbon, and for calculating the resolved shear stress in the slip planes and slip

directions of the dislocations for a given growth orientation. Experimental approaches

to the thermal stress problem and some experimental results are also described.

a. General remarks

The basic assumptions in the theoretical formulation of thermoelas-

tic problems (see Chapter 8 of Ref. 10) are: that the temperature can be determined

independently of the deformations of the body, that the deformations are small, and

that the material behaves elastically at all times. Also, it is assumed the'. die body is

isotropic, and that the Young's modulus and thermal expansion coefficient are inde-

pendent of temperature (the latter assumptions are not necessary in the numerical

calculation of the stresses). As described in an earlier section, thermal stresses

arise as a result of non-uniform temperature distributionq in the body (as well as

stresses caused by external constraints). In the general three-dimensional problem,

there are 15 unknowns: the three displacements (u, v, w), the six strain cor_- aents

(¢ ij), and the six stress components (crtj). These variables are related by 15 equ -
tions: three equilibrium equations (t = y, _,, z)

aeix aOiz
+ + Fi 0 (3)"_'_ _ = '

where F. is theith compo-3nt of the body forces; six stress-strain relations1
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EXX = _ (TXX

and

Exy= (1-_E) axy, etc., (5)

where E is Young's modulus, _ is Poisson's ratio and _ is the thermal expansion

coefficient; and the six usual strain-displacement relations (e.g., p. 248 of Ref. 10).

In addition, boundary conditions (surface tractions or displacements) are specified

on the bounding surfaces. It should be noted from Eqs. (4) and (5) that the thermal

expansion contributes only normal strains (i.e., no shearing strains).

A principal prediction of thermoelast_city theory is that if the temperature

varies linearly with a set of rectangular Cartesian space coordinates, then all the

stress components are identically zero throughout the body (provided that surface

tractions, body forces and displacement discontinuities are absent). Conversely,

this is the only temperau_re distribution for which all stress components are

identically zero. This concurs with the qualitative argument we presented in Fig. 8.

The general, three-dimensional thermoelasticity problem cannot be solved

analytically; various methods of solving for the strains, stresses or displacements

are described in Ref. 10. However, the problem of calculating the stresses in the

ribbon is considerably simplified by recognizing that the concept of plane stress is

applicable in this case. Here we have the temperature T = T (x, y), and the thickness

t in the z-direction small with respect to the other dimensions (see Fig. 14); therefore,

it follows that

= _xz = o = 0 (6)_zz - yz "

The remaining stress components are obtained from the stress function _ (x, y)

v,hich is a solution of the following differential equation:

a4_ a4¢ a4_

/dg"T d_'T_
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Z

I,. ..... S',,, o _y -_
I

k J

Fig. 14. Definition of coordinate system used in the calculation
of the thermal stress in the ribbon. The plane stress
solution is applicable for t << C and t << L, where
L is the ribbon length.
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The boundary conditions for traction-free surfaces (which is the case of interest to
a9

us) are given by 9 = _- = O, where n denotes the normal direction to the bounding

surface. The stresses are given by"

a29 a29

Crxx= _-_'_YY= a-_x
and

a29
%y axay • (8)

In terms of the stress components, the boundary conditions are that Crxx = Oxy ---O

at x -- O, and that ¢ryy = exy O at y -- ± C, where C is one-half of the ribbon width.

b. Analytic solution for the stress in the ribbon

Boley and Weiner (10) present a solution for the stress function q_

for the case of a thin rectangular beam (see Fig. 14) of width 2C and length L with

C/L << 1. The temperature in the beam is an arbitrary function of the coordinate y

across the ribbon width, but it is a somewhat restricted function of x, as discussed in

more detail below. The solution to Eq. (7) and traction-free surface boundary conditions

is obtained as an infinite series 9 = 91 + 92 + 93 + ... ; successive terms of this

series depend on successively higher derivatives of T with respect to x. For example,

q_.depends on a2(i'l)T/ax 2(i-1) . Therefore, the series will converge rapidly if1

the temperature variation with x is sufficiently smooth, i.eo, if it is expressible in

a sufficiently rapidly convergent power series. The solutions for qJi up to i = 3 are

given in Ref. 10 for the general case where T = T(x, y).

When the temperature is a function of the vertical coordinate x only, the first

three terms in the solution are given by

d2Tore

_1 = 0 ' ___2=
( )" z"q" x9"c2-"

dx 2
and

ore (yg- _ C_2 (y2 d4T93: - 3c"). (9)

The leading terms for the stress components can be obtained from Eqs. (8) and (9):

3O
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= 6 "CJ-" C2 dx--3"

(Crxx) = orEC 2 ( 3y2_ d2Te • z..... (11)C 2 ] dx2

- 24 • 1- _ . -- (lz)
d4T

C2 dx4 '

where the subscript "th" is used to denote the thermal component of the solution.

From these equations, we see the qualitative dependence of the stress components

on the ribbon width (w ; 2C) and on the derivatives of temperature. In the qualita-

tive discussion of the origin of thermal st.s'esses in Fig. 8, we were essentially con-

sidering the exx component of the stress.

(i) Corrections for non-zero tractions at interface

One of the problems with the above solution is that the require-

ment of zero traction at the end x = O ¢he., the solid-liquid interface) is not satisfied;

rather the tractions are self-equilibrating there (i.e., no net forces or moments).

According to Saint- Venant 's principle (e.g., p. 345 in Ref. 10), the above solution is

therefore valid only at distances x > 2_.. However, most of the plastic deformation

in the case of the ribbons occurs in the region x < 2c; hence we must add appropriate

correction terms to the stresses in Eqs. (10) to (12) in order to account for the non-

zero tractions at the interface.

The p_'oblem of the stresses arising from the application of self-equilibrating

tractions on one end of a long, rectangular strip has been treated in a series of

papers by Horvay._11,"12) In order to obtain zero traction at the interface in the case

of the ribbon, we must apply at x = 0 the normal stress (cf. Eq. (11))

and the shear stress (cf. Eq. (10))

6 "dx--rlx-O' "
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The stresses which result from the application of the normal stre_'s in Eq. (13) are
(11, 19.)

given by

_ex.y)e * aE C2 d2T[ . 2 y- ' "_i__-o _;I _ _"
• e=a2x/C • sin (_2x/C)

a2 _s2x/C)]• [cos _s2x/c)+ _ sin

O_yy) • • �,�•" "
(; x=O

a2 _,• e'a2x/C .[cos _2x/C) - _-2 sin _2x/C

while the shear stress distribution in Eq. (14) leads to the stress components (11'
12)

otEC 3 d3TI (1. 3_._) e'a2 x/C"
(axY)r*= 6 " d-_'lx=o'C-_'" C2 "

ag" %x/c)]• [cos%x/c) - _ sin

r * dx3 " " "x=O
(t6)

• e'a2 x/C • sin _2x/C)

(eyy) aE C3 d3T _2 (1- C-_'2 _9. _2 x/C12 dx3
T ° x=O

_ z %x/c)]
( a2 "0't "sin ,
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where ot2 = 2.0751 and/32 = 1.1429. Similar correction terms for the higher order
terms in the "thermal" solution *n Eq. (9) have also been derived. (11, 1-9)

The total value of each thermal stress component is thus the sum of three
terms, ViZo_

(triJ)total= (crij)th q" ((YiJ)(_ ° q"(CriJ)T* " (17)

Therefore, each stress componem is a more complex function of the ribbon width

and of the derivatives than given in Eqs. (10) to (12). 1he y-dependencies of the

correction terms in Eqs. (15) and (16) are seen to be the same as those of the respec-

ave terms in Eqs. (10) to (12); the magnitude of the terms decrease exponentially

along the vertical coordinate. An example is considered in the next section.

(ii) Thermal stress for radiation into 0*K environment

Consider the case of a ribbon which radiates into a 0*K en-

vironment. The temperature distribution is given by_

T (x) = 1 (18)
(a x +b)_

where

[_ (w + t) cr c] 2 1/Tin 2a= wt km Tm j andb= .

We used the following values tn the calculations: w = 2 cm, t = 0.09.5 cm,

cr = 5.67 × 10-5 erg/cm _"(*K)4 sec, k m : 0.2_. × 107 erg/cm *K sec, c ffi0.54 and

Tm = 1685"K. The resulting temperature distribution is show_ in Fig. 15; tt is
readily seen that plastic deformation tn response to the thermal stresses can be

expected only in the region x < 1 cm _daere the temperature is in excess of .-.800"C.

Figures 16 to 18 show the three stress components calculated for the tem-

perature profile in Fig. 15. In each case, the contributions of the various terms in

Eq. (17) to the total value of the stress component are shown. In the top part of

each figure, we show the x-dependence of the maximum of each stress component, i.e.,

Crx_y/C = I' ey_ y/C = O and Crx_y/C = 0.6 (in the latter case, the maximum

tThe various terms in these expressions are defined in a previous section. The
ribbon is assumed to be stationary for this calculation.
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actually occurs at y/C = 1/_PJ ). The y-dependence of each stress component can be

obtained by combining the top curves with the normalization curves in the lower

parts of Figs. 16 to 18.

Considering the stress component axx in Fig. 16, we see that the outer

portion of the ribbon 0.e., I y/C [> 0.6)is in compression, whereas the inner por-

tion is in tension. It is likely that the plastic deformation during growth, in

response to these thermal stresses exceeding the yield stress, accounts for the

"lengthening" of tile ribbon in the central region, as observed from the residual

stress in the ribbon (cf. Section II.B.9..). _"

(iii) Maximum and resolved shear stresses

Ratiler than discussii_ the above results in terms of the

individual stress components, it is more useful to evaluate tile maximum shear stress

• at each point in the ribbon and to determine the plane on which this stress acts.

As described in any standard text on elasticity, there exist two mutually per-

pendicular sets of axes on which the shear stress vanishes; the normal stresses on

these planes are the "principal stresses" a1 and a2 which are given by

 (oxxo.ixx 9.

Ol, 2 = 2 • 9. / 4Crxy . (19)

The principal axes are at angles °P1 and 9 2 to the_ x-axis, where

_- "xy . (9.0)
tan 91, _. axx " al, 2

The shear stress is maximum on a plane midway between 91 and _o2, and also

on a plane perpendicular to this plane. The maximum shear stress is given by

rma x - 9. = _ + Crxy

Table II lists the values of _'max (in kg/mm 2) as a function of position in the

ribbon for the previous example of radiation into a 0°K environment; the plane on

which this maximum shear stress acts varies from point to point in the table/f

t Values of E = 1.94 × 104 kg/mmg, and a = 5 × 10 -6 *K"1 have been used in the cal-
culations.
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Table II. Maximum Shear Stress (in kg/mm 2) as a Function of Position in the
Ribbon, and Temperature and Yield Stress as a Function of Vertical
Distanc e.

y (cm) T o *
Y 2

x (cm) 0 0.3 0.6 1.0 (°K) (kg/mm)

0 747 6!8 306 0 1685 0.03

0.2 52 83 103 45 1359 0.40

0.4 49 53 56 81 _170 1.70

0.6 6.1 9.8 25 89 1043 4.45

0.8 20 22 27 81 950 9.2

1 31 31 31 66 878 16.4

2 11.1 10.9 9.6 10.0 668 83

3 1.03 0.95 0.72 0.54 560 190

4 0.08 0.06 0.02 0.17 492 330

5 0.08 0.06 0.02 0.17 444 470

•Yield su'ess values were estimated from J. R. Patel and A. R. Chaudhuri, J. Appl.
l_ys. 34, 2788 (1963). Low temperature extrapolations probably exceed fracture
stress.

The y = 0 values correspond to the central axis along the ribbon, y = 1 cm is the rib-

10onedge (a width of 2 cm was assumed). The table also lists the values of the tem-

perature and of the yield stress of silicon at each temperature. It is seen that the

thermal shear stress (if the material were to behave purely elastically) exceeds the

yield stress in most of the region x _ 1 cm, and hence plastic deformation will occur.

The prediction of the residual stress in the grown ribbon is beyond the scope of the

preqent analysis. Clearly, time dependent plasticity effects must also enter the

problem; each portion of the ribbon at x = 0 must also experience the thermal stress

at x > 0 as the ribbon cools down to room temperature.

Since dislocation glide is likely to be the predominant mechanism of plastic

deformation, one should also calculate the resolved shear stresses on the slip planes

and along the slip directions of the dislocations for a given crystal growth direction.

:- Table III lists the resolved shear stresses for a ribbon growth orientation of (111)

[11_.]. For randomly polycr/stalltne ribbons, such an analysis, of course, would nor

be very useful; recent evidence (ly' 20) suggests, however, that the ribbons attain a

{110} < 112> growth orientation and a steady-state defect structure.
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Table IIl. Resolved Shear Stresses for (111) [112] Ribbon Growth

Plane Direction Resolved Shear Stress

(11i) <i10> 4

(ni) <011> 4
(%_- any)

(11i) <101> 4
(%x �%y)

(hi) <o11> 2
sf-6-- (axx"_YY)

(h_) <10i> 2 (3a - +2Oxy)9v/_ xx Oyy

d,-i) <11o>
3f2- (axx+ axy)

(lii) <1oi> 2
3_-6- (_xx- ay:,)

(lii) <off> 2
(3axx - ayy " 2 _xy)

(lii) <110> 2
3_-2- (%x" %y)

(iv) Limitations of the analytic solution

The major problem w_rh the analytic solutions described in

this section is that convexgence of the _ .._t_,, tx:cu.--sonly if T(x) can be expressed

as a polynominal in x. In the_derivation of Eqs. (10) to (12), which we used in

subsequent analyses and examples, we have already neglected the higher order

terms (i.e., t _ 3) in the solution. Thus we have neglected a d4T/dx 4 term in

Crxxwhich would obtain from ¢P3in Eq. (9), whereas we included the same deriva-

tive in the calculation of Cryy(from _2 in Eq. (9)). It turns out that the tempera-
ture distribution (Eq. (18)) for radiation into 0*K environment actually leads to

increasingly higher values of the derivatives; for example, the thermal contribu-

tion to Crxxfrom the i = 3 term is nearly an order of magnitude larger than the
i = 2 term which we considered. Accordingly, the analytic approach outlined above

4O

1977005572-047



i t i 1I

is only useful for temperature distributions which can be expressed in cubic (or less)

power series in x. Otherwise, the solution gets even more complicated, as correc-

tion terms must be added for the higher order terms in Oxx and Crxyin order to
have zero resultant tractions at the interface.

A further problem with the analytic solution is that it is not readily com-

patible with the numerical calculation of the temperature profile in the ribbon

described in a previous section. For these reasons, we have developed a numerical

program for calculating the thermal stress in the ribbon; this will be described w,

detail in a later section.

(v) Effect of horizontal temperature distribution

The analytic solution (10) extends to the case wherethetempera-

tureis a function of the coordinate y along the ribbon width. Some preliminary calcula-

tions werethereforemade to seethe effect of curved isotherms on the thermal stresses.

The following form was assumed for the temperature distribution in the ribbon:

,: T(x,y) = (1 - ,8 y2). T(x). (9.2)

Thus fl > 0 corresponds to concave ("frowning") and fl < 0 to convex ("smiling")

isotherms. The calculations showed that fl > 0 leads to low___erstresses, while

fl < 0 leads to higher stresses than the fl = 0 case. An approximate calculation

also showed that the isotherm radius of curvature (with fl > 0) mu,,_tbe of the order

of the ribbon width in order to cancel the thermal stresses c=u_ed by the x-dependence

of the temperature. A simple qualitative argument (as in Fig. 811readily shows that

the frowning isotherms should indeed lead to a reducticr: in the stress component

C;xx caused by the vertical temperature profile.
In view of these results, it is interesting to speculate on how the growth of

, zero dislocation density crystals is achieved in the Czochralski technique. There

the growth interface is reported to attain a concave shape under the right growth

conditions. It is conceivable that the combination of the radial temperature varia-

tion (i.e., frowning isotherms) and uhe smoother axial profile in the crystals

leads to a condition where the thermal stresses during growth are negligible.

There has been no general treatment of thermal stresses in Czochralski crystals

caused by the combined effects of radial and axial temperature profiles.

41

f

1977005572-048



l
c. Numerical calculation of the stress in the ribbon

It is apparent from the above that it will not be possible to obtain

: an analytic expression for the thermal stress in the ribbon which is of such a general

form that it could deal with the temperature distributions of practical interest. We

have therefore developed a computer program for determining the stresses by the

me_aod of finite differences.

: At the point (1, j) in the ribbon (see Fig. 19), we can write Eq. (7) in the

following finite difference form: .._

T

+ (i+1, jr 1)+ (i +1,j-1)¢0 (i-l, j-l)+ (i-1,j+ 1)]
+ _(i, j+2)+_ (i+2, j)+_ (i, j-2)+0 (i-2, j)

= -qE62[T(i, j+l)+T(i+l, j)+T(i, j-l)

+T(i-1, j)- 4T(i, j)] . (23)

Here we assumed that the nodal points are spaced equally in the x and y directions,

i.e., that 6 x = 6 v = 6. For example, we consider a ribbon 9 cm wide × 5 cm long,

and set the increments 6 = 0.1 cm. Because of symmetry about the x-axis, we need

to consider only half of the ribbon (see dark solid lines in Fig. 19). Since we would

like to use the general form of the nodal equation (Eq. 23)) for all nodal points, we

need to "extend" our grid beyond the ribbon (solid lines) in Fig. 19. Let's consider

this extension by examining the boundary conditions.

Along the y-axis (i = 2), we have c = O and e... = O. Therefore,
XX , t.j_

ag¢/0y 2 = O, a_/_j = A and 0 = Ay + B. Also, 0_9/0x_y O and aq)/ax = c.

The constants A, B and C can now he chosen arbitrarily, as this will not affect the

magnitudes of the stresses. Therefore, we set A = B = C = O, which leads to

(2, j) =Oand_0 (1, j) =q) (3, j) for allj. Similarly, we have0 (i, 13) =Oand

9 (t, 14) -- _ (t, 12) for all i. We also know that 9 must be symmetric about the

x-axis; therefore, _ (i, 1) = _ (t, 5) and _ (i, 9) = _0 (i, 4).

At the far end of the ribbon (x = 5 cm), we suspect that _ must be some

smooth function of x. We therefore impose the boundary condition that eyy = con-
stant, t. e,, a2_/ax 2 = A. Therefore, a_O/ax = A x + B and _ = Ax 2 + Bx + C. We

solve for the constants A, B and C by fitting the above quadratic equation to the

,.
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Fig. 19. Finite element grid for numerical calcul_tiou of the
thermal stress in the ribbon. _fhe dark llne_ denote
one-half of the ribbon; J = 3 t:, the center axis,
j= 18 istheribbonedge,andi= 2 isthegrowth
interface.
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points i = 48, 49 and 50 (for each given j), then we extend the solution to @ (51, j)

and @ (52, j). We can now write the nodal equation (23) for all i = 3 to 50 and j = 3

to 12.

(i) Method of solution

The solution of the nodal equations requires the sp_ification

of the temperatures T (i, j) and an initial guess solution of the stress function @ (i, j).

We can then substitute a new value of @ (i, j) during each iteration, viz.,
_,

%ew (i, j)= %ld (i, j) + R [@func (i, j) - @old (i, j)]. (24)

; Here; _old is the value of the stress functiop before the iteration, and ¢Pfunc is the
value of _ (i, j) obtained from the nodal equation (23). R is the relaxation constant;

R > 1 implies over-relaxation, and generally more rapid convergence. In our case,

we found that R = 1.95 resulted in the fastest convergence; for R _>_2, the solution

diverged. The operation indicated in Eq. (24) is carried out point by point (.j= 3 to

12) and row by row (i = 3 to 50) during each iteration. It was found that the value

of _ (i, j) remained constant to 5 significant figures after 5000 iterations. "Ihe

stresses at (i, j) are then calculated from finite difference formulas equivalent to

Eq. (8).

The form of the initial guess solution did not affect the results, except per-

haps the _peed of convergence during the first ~ 1000 iterations. Therefore

9 (i, j) = 0 everywhere initially was used in most of the calculations.

(ii) Examples of numerical calculation of stress

The initial attempt to calculate stresses by the above numeri-

cal procedure was for the case of a ribbon radiating into a 0*K environment. As pointed

out above, the analytic calculation gave only approximate results in this case

because of neglecting the higher order terms in the solution. A comparison of the

numerical and analytical solutions for this example shows that the qualitative natuce

of the analytical solution (i.e,, the x-y spatial dependence and the relative magni-

tudes of the stress components at a given point) is correct, but that the stresses

shown in Figs. 16 to 18 are too large by about an order of magnitude. This does

_ not imply that the numerical solution is necessarily correct, however.

44

1977005572-051



In order to examine the accuracy of tile numerical calculation, we need to

consider a temperature distribution for which the analytical procedure gives exact

results. For simplicity, we assumed a quadratic form for T(x), i.e., T(x) = A + Bx

+ C x2 (e.g., A = 1685, B = -560 and C = 56 were used). A comparison of the thermal

stress components obtained by the numerical and analytical techniques showed that

: the former were consistently with::a < 10% of the correct analytical value_. A

slight problem with the numerical solution appears at the far end of the ribbon

(x _ 4 cm); here the numerical solution begins to diverge from the analytic solu-

tion after many iterations. The problem undoubtedly lies in the far-end boundary

condition used in the numerical calculations; this will require further investigation.

In conclusion, it is apparent from these results that, whereas the analytic

solution was useful to show the qualitative, dependence of the thermal stress on the

spatial variables and the ribbon width, the numerical approach is far more useful

for the practical cases of interest to us. For example, the numerical program can

determine the stresses for any given T (x,y) in the ribbon, such as may be found

_a a given growth setup. The accuracy of the solution (~ 10_0) is clearly sufficient

for our purposes; some effort must still be made to improve the far-end boundary

condition. The compatibility of the uumerical stress calculation program to the

thermal profile program described in Section H.B.3,is readily apparent; rhe ultimate

usefulness of these programs would be, of course, to determine the T (x,y) (_the

appropriate thermal environment which leads to it) such that, on the time-scale of

EFG ribbon growth, no plastic strain occurs at any point in the ribbon. Although the

thermoelasticity calculations described here are not sufficient to predict the residual

stress tn the ribbons, they do show the extent of plastic deformation which occurs and

the temperature and ribbon regions where plastic flow is most severe. The inclusion

• of time=dependept plastic flow effects into the model would, in principle, allow one to

calculate the residual stress in the ribbon. At the present time, there is not sufficient

data on plastic flow in silicon to permit such a calculation.

d. Experimental approaches to thermal stress problems in EFG
ribbons

The foregoing theoretical analyses of thermal profiles and stresses

tn ribbon-shaped crystals have greatly influenced the experimental program, particularly

the design of the experimental equipment used to control the thermal environment of the

ribbon. The deratl_cl results of the experiments were presented in earlier reports on

this progr._m; (13, 14) a summary of the growth runs is given elsewhere in this report.
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(i) Control of the vertical temperature profile

The vertical profile in the ribbon impacts both program objec-

tives of fast and stress-free ribbon growth, For high crystal growth rates, we need to

attain a high initial vertical gradient (i.e., at the growth interface) in the ribbon.

This requires rapid cooling of the ribbon surface in this region, v:hich will then

lead to a large value of the second derivative of the vertical profile. The possible

necessity for a trade-off between fast growth (large dT/dx and d2T/dx 2) and low

thermal stresses (small d2T/dx 2) is therefore an immediate consideration. ""

The control of the vertical profile has been implemented by various passive

and active afterheater block designst (cf. Fig. 11). The extent of the hot (or cold)

zone, the temperature profile along the block, and the. location of the block with

respect to the ribbon (i.e., distance from ribbon surface, and height above growth

interface) have been the major variables in the experiments. Coolipg of the

blocks (by water flow) was also included in the designs. Typical growth rates which

were achieved using "cold" afterheater blocks (e.g., Fig. lib) were in excess of

2 in./min and, in some cases, approached the program goal of 3 in./min. These

rares are not any higher, however, than what can be achieved by simpl_ shielding

hot surfaces and allowir .: the ribbon to radiate into an essentially 0*K environment.

In addition, all the ribbons grown from the cooi_ blocks were excessively stressed.

The use of insulating blocks (14) has resulted in lower growth rates (~ 1.2 in./min to

1.8 in./min) and still large residual stresses. Actively powered afterheater blocks

have been designed and will be tested. To date, no afterheater block configuration

has been used on this program which permitted growth rates tn excess of ~ 1.2 tn./min

and resulted in tolerable residual stress in the ribbon. Later in this section, we wtll

describe a recent design strategy which is expected to lead to fast, stress-free ribbon

: growth; the design makes extensive use of the theoretical modelling in Section II.B.3. _o

obtain successive manipulation of the vertical temperature profile in the ribbon.

(it) Control of the horizontal temperature profile

The concept that concave (or frowning) Isotherms in the ribbon

should lead to a reduction in thermal stresses has been verified, to some extent,

tA "passive" block receives its heat from the environmen.t (susceptor and crucible,
die heater_, ribbon, etc.); an "active" block contains an independently powered

• heating element.
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in some fast ribLon growth experiments on an earlier in-house program.(15) it was

found that die tendency uf th¢ ribbon to buckle (cf. Fig. 7a) could bc correlated to thc

shape of the solid-liquid interface. The latter was varied by changing the radius of

curvature of the die top (in the plane of the die). At steady-state growth, the inter-

face was either smiling (in the case of 12 in. radius of curvature dies) or frowning

(in the case of flat-top dies); an example of each is shown in Fig. 20. The buckling

of the ribbons after growth occurred with only the curved dies, i.e., with the smiling

growth interface; the tendency to buckle can probably be associated with a larger
_.

residual stress in these ribbons. Of courqe, the shape of the interface is also that

of the isotherms in the near vicinity, at least, of the interface. Hence the lower

residual stress in the ribbons with the frowning iso_ _rms provide,., support for the

theoretically expected dependence of the thea'mal stress on the horizontal profile.

Attempts to vary the horizontal temperature profile (and to attain frowning

isozherms) during the current experimental program have been two-fold; neither

approach has been particularly successful thus far in reducing the residual stress.

First, the use of reverse-curved (I.e., frowning) dies has been considered; initial

experiments _14)"with a 12 in. radius reverse-curved die encountered difficulties in

attaining full-width (1 in.) growth, however. The residual stress measured in one

0.8 in. wide ribbon grown from this die was ,,, 25,000 psi; (14) the small reverse cur-

vature was clearly insufficient to affect the thermal stress in the ribbon (cf. Section

II.B.4.b). A second approach has been to modify the cooling block to obtain preferential

cooling near the edges of the ribbon, Although the horizontal isotherms were clearly

affected, as evidenced by the fracture morphology of the seed or ribbon crystals, the

residual stresses were stt11 excessive. Clearly, further analytical work is required

to identify the proper horizontal profile which ¢¢ouldoffset the effects of the vertical

profile on the thermal stress in the ribbon.

(tit) Annealing of the residual stress

An obvious solution to the residual stress problem would be to

subject the ribbons to a process of annealing at a high enough temperature such that

stress relaxation, by the diffusion-controlled climb of dislocations, for example, can

occur. Previot,s experience t16)" with moderately stressed (i.e., < 20,000 psi) ribbons

has indicated that the residual stress could be reduced to a negligible level by annealing

the ribbons at 850*(2for ,,25 minutes. Similar experiments with the highly stressed

ribbons grown on the current program has thus far proved to be unsuccessful; the

ribbons would invariably shatter on be,ng loaded into the annealing furnace. The

47

1977005572-054



l i

\

Fig. 20, Shapes of the solid-liquid interface (arrow) and die top in EFG
ribbon growth. (a) Smiling interface with a 12 in. radius

' of curvature die; (b) frowning interface with a flat-top die.
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fracture of these ribbon._ is probably caused by the additional mechanical and ther-

mal ._tre,qses during the loading operation.

Assuming that the time-dependent relaxation process, _,nEFG i Lbbons con-

_: - raining dislocations, is likely to be the diffusion-controlled climb of dislocations,

we can make an estimate of the annealing times, at various temperatures, which

would be required to achieve complete stress relaxation. Using the experimental

data at 850"C reported above, and possible activation energiestl7," 18) of 2 eV, 4 eV

or 3.1 eV for the relaxation process, we obtain the relaxation times given in Table IV.

It is likely that the true activation energy falls somewhere between the limiting

values we have assumed. It is readily seen from the table that stress relaxation

occurs very rapidly at temperatures above ~ 1200"C and that _t is very slow at

temperatures below ~ 700"C. These findings have been instramental in the develop-

ment of a n_w strategy, described below, for reducing the residual stress in the

ribbons during gro_da.

Table IV . Stress Relaxation Times as a Function of Temperature for
Various Activation Energies

Stress Relaxation Time (min)

Activation Energy

T*c__($2___ eV 4eV I S.1eV
600 9400 3.5 × 106 9.2 × 107

700 609 1.5 × 104 8.6 × 104

500 66 172 293

850 25 25 25

900 10.3 4.3 2.6

I000 2.2 0.19 0.05

1100 0.58 0.013 0.002

1_.00 0.18 0.0018 0.0001

1800 0.06'7 0.0002 0.00001

49

I

"1077005572-056



(iv) A new slxategy for minimizing residual stress in EFG
ribbons -T

The thermal stresses that arise as a resuk of non-linear tem-

perature gradients in the ribbon during growth were discussed in detail earlier in this

section. The theory described the forces that would tend to cause plastic deformation,

and the dependence of the forces on the thermal profiles and on the ribbon geometry. If

no plastic strain is permitted to occur during ribbon growth, then the above theory

is immediately useful; it predicts that either the ribbon breaks in a region where

the thermal stress is too high, or the ribbon emerges with no residual stress. On

tile other hand, if plastic deformation occurs, the calculation of the residual elastic

strain in the grown ribbon requires a solution of the complete elastlc-plastic problem;

the latter involves the inclusion of the time-dependent plasticity effects into the

theory.

At high temperatures, plastic deformation can occur by several distinct

mechanisms; the important ones for this problem are the slip of dislocations and

the climb of dislocations.

For slip to occur, dislocations must be present, and for more than a very

small strain, dislocation sources must Operate. For stresses above some level

which is conveniently (but incorrectly) referred to as the "yield stress", deforma-

tion by dislocation slip is essentially instantaneous; that is to say, on the time scale

of EFG ribbon growth, the strain rate is fast enough for the stress not to rise above

the yield stress.

The process of dislocation climb allows plastic deformation to occur in

response to any stress, however small. _he rate of strain for a given stress,

however, decreases very rapidly with decreasing temperature. For the present

problem, this means that "]ae 3tress in the ribbon does not remain at the yield stress,

but is spontaneously relieved by the climb mechanism. This relief may be complete

or partial depending on the time and temperature.

Thus we see that re,_idual elastic strain in the ribbon can be avoided if there

is either ccmplete relaxation of stress or no relaxation of stress (i.e., no plastic

strain) during the whole of the change of temperature of each element of the ribbon

1"The collaboration in this work with B, Chalmers, A. R. Chaudhuri, M. C. Cretella,
C. V. Hari Rao, D. N. S_wett, B. H. Mackintosh, A. I. Mlavsky and K. V. Ravi is

: gratefully acknowledged. The work described here was done on Mobil Tyco
; funded programs, and was not a part of this contract.
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from the melting tempea ature to room temperature. We are therefore concerned with

the minimum time required, at various temperatures, to allow complete relaxation,

or the maximum time during which no relaxation occurs. From the relaxation times

: in Table IV, we see that stress relief in the ribbon would be effr_tively complete at

an3"temperature above about 1200"C, and that almost no stress relief would occur

below about "/00*C.

The above considerations suggest that the vertical temperature profile in

the ribbon, ideally, should consist of three zones. The first zone (from the melting

temperature to ~ 1200°C) should consist of an initially large temperature gradient

(~2400"C/cm for 3 in./min growth rate), and a very rapid decrease of the gradient

away from the growth interface. This is required in order to achieve the desired high

growth rate. Plastic strain in this zone should occur fast enout.enfor the stress to be

completely relieved. Of concern in this temperature region is the minimization of the

plastic strain induced imperfections. This can be achieved by minimizing the second

and higher order derivatives of the vertical profile, or by counr..-t'ing the effects of the

vertical profile with an appropriate horizontal profile. The second zone should be a

region of constant temperature gradient in which the stress-free ribbon cools from

,-.1200"C to below ,..600"C; no stress or strain is introduced in the ribbon in this zone.

The third zone should consist of a further decrease in gradient that is needed to reach

zero gradient at room temperature. No plastic deformation can occur in this latter

zone; therefore, if the ribbon is stress free when it enters it, it will again be stress

free when it leaves this zone at room temperature. The crucial question in this third

zone is the elastic (thermal) stress which is developed; if this stress does not frac-

ture the ribbon, it will then disappear as the gradient becomes zero at room temperature.

The previously developed numerical thermal profile calculations played

a major role in studying the'feasibility of the above concept for the vertical profile

in the ribbon, and in designing the hardware of the cooling/afterheating environ-

ments used to achieve the desired profile. An example of a cooling/afterheating

block is shown in Fig. 9.1a. The distance above the growth interface is 0.109. cm

(40 mils), while the distance from the ribbon is 0.0'/6 cm (30 mils). The thermal

profile along the block consists of a 0.19.'/cm (50 mil) cooling zone at 4'/3°K, a

same thickness insulating zone at 973"K, and an actively powered afterhcating zone

w_.tha linear gradient of 35.4"K/cm starting at 13'/3"K. The calculated temperature

profile in the first 1 cm of the ribbon is shown in Fig. 21b, The ribbon is assumed
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Fig. 3!. (a) Schematic of cooltng/afterheating block for fast, stress-free
ribbon growth. (b) Calculated temperature profile in the first
! cm of the ribbon for the block In (a).
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to be stationary (Vg = O); thermal interaction between the ribbon and the block is by
radiation and conduction through argon. A maximum growth rate of 3 in./min (for a

0.025 cm thick ribbon) can be predicted from this profile. Within the linear g_'adient

zone of the afterheater, the temperature profile in the ribbon soon attains that in the

afterheater block.

The above concept for fast, stress-free ribbon growth has been tested and

verified on a MTSEC in-house program. (19) Growth rates in excess of 2 in./min

and ribbon widths up to 2 in. have been achieved; the residual stress in the ribbons

_as negligibly low. The cartridge design, with the built-in cooling/afterheating

blocks, useh in these experiments has been transferred to the current JPL program

and will be used in the initial wide growth runs (on Machine No. 1).

(v) Summar,,

• Residual stress in EFG silicon ribbon crystals

results from the plastic deformation the ribbons undergo at the high temperatures.

The plastic flow is caused by the excessive thermal stresses in the crystal during

growth.

• Thermal stresses result from non-linear tempera-

ture distributions in the ribbon. The principal contributor to the thermal stress is

the vertical temperature profile; concave (or frowning) horizontal isotherms would

tend to decrease the thermal stress. Transverse (or through thickness) gradients

in the ribbon probably do not contribute to the thermal stress.

• Thermoelasticity theory, applied to the ribbon

geometry, can predict the magnitude of thermal stresses and the extent of plastic

deformation at each point in the ribbon. The theory cannot predict the residual elas-

tic strain and stress in the ribbon; the latter involves the inclusion of time-dependent

plasticity effects into the theory.

,T • Stress relaxation occurs rapidly in EFG silicon

ribbon at temperatures in excess of 1200"C; almost no relaxation occurs below

~ 700"C.

• The effect of growth rate on residual stress is two-

fold: it affects the vertical profile via the specific hear transport in the ribbon, and

it influences the extent of stress relaxation which can occur at a given temperature

(cf. Table IV).
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• The thermal stress in the ribbon during growth, and

hence the residual stress, increases with Increasing ribbon width; this is in agree-

ment with experimental observations.

• The ribbon thickness affects primarily the v_._rtical

profile in the ribbon (dT/dx is proportional to t" 1/2).

• The possible effects of the thermal stress on the

steady-state defect structure (20) and on the density of plastic strain induced imper-

fections, and the effects of solutes (carbon, impurities, etc.) on the stress have not

been considered in detail.

• The theoretical numerical modelling program for

the vertical profile in the ribbon has been used extensively to design a cooling/after-

heating block for fast, stress-free ribbon growth. Initial experiments using this

design have proved to be successful in that growth rates of > 2 in./min and ribbon

widths up to 2 in. have been achieved with only negligible residual stress in the rib-
bolls.

C, Thin Ribbon Growth

One of the goals of the program is the growth of ribbons of controlled uniform

thickness down to 0.1 mm. The impetus for establishing such a goal is based upon the

dual requirements of low material usage (low cost) and sufficient thickness of the

silicon for adequate solar cell cenversion efficiencies. This goal was reviewed (14)

in the light of the many known variables that influence ribbon growth, the reliability

of crystal growth machine components, solar cell conversion efficiencies and the

possible impact on yield and cost. The examination indicated that very thin ribboa

growth is probably undesirable and the possib] _ economic advantages of thin ribbons

are signiflcs:ltly offset by other factors. The discussion of growth related factors is

paraphrased below as an introduction to .v._.experimental effort and as a rationale for

its method. Thus, ribbon thickness t is gtve_ by a known analytical expression (6"
7)

of the form:

t = f(t d, s, heft, _o ) , (25)

_ere tdts the thickness of the die top, s is the meniscus height, heft is the effec-

tive height of the growth interface above the liquid level in the crucible and _o is
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the angle between the tangent to the meniscus and the growth axis. Among these

param_ers, 9o is a material parameter being related to factors such as the local

orientation of the crystal surface. The other parameters, td, s and heft that control
ribbon thickness are process or equipment related variables. Consequently, the

sensitivity of ribbon thickness to these variables is of concern.

Shape stability in growth can be associated with the magnitude of dt/ds. Low

•1dt/ds I will result in greater stability. The detailed analysis (14) of Eq. (95) shows

that the ribbon thickness is more stable as s or heft decreases.
A more explicit dependence of the uncertainty in t due to uncertainties in

the other geometric or process related variables results from the equation:

Atd, the change in die top dimension can arise as a result of machining tolerances,

which would be more critical as td decreases for thinnez ribbon growth. In addition,
small distortions of the die top due either to thermal effects or due to the formation

of SiC particles on the die top would also adversely affect thickness control of thin

ribbons. In general, lat/ dl -_ 1 independent of other variables. Cons,.quently,

any changes in td are immediately reflected as changes in t.
The change, As, in the meniscus height is associated v4th temperature

fluctuations both on a short term and long term basis. In _.ddition, s is also a

function of heft. Present range of control is As is + 0.05 mm with long t_.me prospects
of ± 0.025 mm.

heft changes continuously as the melt level in the crucible drops. With melt

replenishment, it should be possible to keep Aheff to within 1.25 mrn. % changes
by about ± 1" and is largely related to local crystal orientation effects.

The main contribution to At comes from the !8t/_s I As term, with the next

most important contribution coming from the at/at d term_ which Is ----Atd. As s

. increases (for given td and heft) and thus causes a decrease tn t, the error At not

only Increases due to the As term but also due to other terms. Increasing hcf f also

Increases the As contribution to At, offsetting the decrease that occurs due to the

other variables. The experimental approaches to thin ribbon growth are thus

clearly guided by theory; the controllable empirical paramet_s are td, s and hcff.
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t d was the first variable experimentally approached. Early in the program,

one-piece dies were tested to _:educe splaying of top edges of the dies (21) and there-

by to achieve better dimensional co::trol. The experiments were successful and a

variety of one-piece dies were used during the effort to better understand and achieve

'thin ribbon' growth. Open, closed, and plugged end one-piece dies were evaluated;

the latter to effect a higher meniscus and improve edge stability. (
14)

Characterization of the dies included examining the interaction of the dies with

the melt, specifically the formation and distribution of SiC. Silicon carbide particles
(28) -

in ribbons are loci cf _tl-uctu_al in_p_rfcctionq and high impurity concentration,

and are detrimental to solar cell performance. Early in ri,i s program, a one-piece

die was sectioned, polished, and examined by metallography. The die had been at

melt temperature for about five hours and about 18 inches of ribbon was grown from

it. A large number of SiC particles were found at the bottom outside of the die

(Fig. 22a). Very uniform carbide layers and infikration of graphite by mlicon were

found in the capillary channels with very few acicular growths. Carbide layer thick-

ness was N 0.09 turn and venetration depth was ~ 0.9.9. mm (Fig. 29.b). However,

acicular carbides were grown in the feed slot across the top of the die.

Growth runs were made to evaluate dies with minimum td. These dies had a

capillary slot width of only 0.013 cm and "knife-.--dges" for a total t d of 0.013 cm.

Vertical 0.09 cm capillary feed tubes are coupled to the slot by a 0.07 cm horizontal

bore hole. The first die used filled only with great difficulty. Ribbon growth was

very unstable - the resuking ribbon was ~14 mils thick. A post mortem showed a

large effective die top thickness due to SiC growth all over the die (Fig. 9.3), The

subsequent run also used a thin td die. Filling was facilitated by partially plugging
the 0.07 cm hole below the die slot. The seeds used were etched to _ 5 mils thick-

ness. The first ribbon slowly increased in thickness from ,_ 0 mils to 8 mils over

? In. of growth,

The subsequent six starts all behaved the same way. Growth rates were all

around 0.6 in./min. Faster rates were not achievable due to thc freezing of silicon

in the capillary.

The above experience, corroborati,lg many previous observations, indicates

that the cffective td will not be a precisely controllable parameter, growth rat_.s fro,l

a small t d die will be low, and the thin ribbon goal must be achieved_ ;hrough control
of h and/or s.

eft
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(a)

3.2X

Fig. 9_. (a) SIC growth at the bottom of the die. Particles appear to
_. have grown on the top of the residual melt and were loosely

adhering to the graphite (die) wall.

(b) Carbide laver o,_d infiltrated zone in one capillary wall.
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(c) (d)

Fig. 23. Top edges, left and right, from the center (a and b) and
the end (c and d) of a typical used die showing the effective

increase in t l due to SiC crystal growth.
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Two growth runs were made to evaluate the influence of heft on ribbon thick-

ness. However, meniscus hc'ight variations masked any heft effects. Because fixing

heft and varying the meniscus height is very straightforward, these experiments were
next run.

Three growth runs were made t_ specifically relate meniscus height to ribbon

thickness, td and heft were recorded. (The die top dimensions of nine dies were mea-
_°

sured using an 6ptical cornparator. The mean total die top thickness (td) was 14.1

mils. The range was 3.9. mils and the standard deviation was 0.955 mils). Die top

thickness at the end of each run but prior co cool down was measured from calibrated

Polaroid photomicrographs (Fig. 24a). Dies of 3 radii were used to achieve three

very different meniscus heights. The first run was me,de with a flat die; the second,

with a 5" radius die; and the third, with an 8" radius die. Values for meniscus height,

Table V, were also obtained from photomicrographs (Fig. 24b, c, d). Values are

corrected for the 14o viewing angle (actual meniscus height s = x.sec 14o - 1/2 tan

14o (t d - t), where t is ribbon thickness and x is the apparent meniscus height).

heft was measured after the run was completed.
Values for ribbon thickness we_'e taken with a ball rr:icrometer measuring

the center of the ribbon at the point indicated by the ribbon displacement indicator_

The observed results are illustrated in Fig. 9.5 through 27. The experimental data

demonstrates a variation of ribbon thickness with meniscus height, as expected from

theory (solid lines). The quantitative disagreement between experiment and theo_-'y

is probably caused by the difficulty in determining the edge-to-edge die dimension

: (td) during growth and by the uncertainty in measuring the meniscus height from the

photographs. A 2 mil change in die thickness, for example, can shift the theoretical

curves to coincide with the experimental values.

D. Characterization

Silicon ribbons typically contain both crystallographic defects and discrete

inclusions. The inclusions are clusters of SiC particles, q'he crystallogra3hic

defects are predominantly twins, intersecting twin boundaries, dislocations and

low and t_!gta angle grain boundaries. Experiments were carried out to detca mine

: if an optimum seed orientation exists which would give rise to single crystal ribbons,

and to determine seed - ribbon orientation relationships. Experiments were also

17
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(a) (b)

(c) _d)

Fig. 24. Die top during ribbon growth: (a) end view; (b, c, d) side
view showing die, meniscus, and growing ribbon.
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Table V. Meniscus Height Versus Ribbon Thickness
(mils)

Ribbon No. 14-200" Ribbon No. 14-201"* Ribbon No. 14-202"**

t s t__k__ s t__h_

2.4 14.5 8.35 6.75 8.99 12.0

2.4 14.5 6.71 7.5 11 77 7.5

2.78 15.0 7.45 7.25 11.32 8.0

3.4 14.5 8.18 7.0 6.90 12._

9.1 10.5 7.00 7.5 7.56 12.6

9.06 9.5-10_0 6.13 12 6._ ; 13.0

7.18 11.5 8.78 6.5 6.60 12.0

3.3 13.5 7.54 8 8.87 11.0

4.15 13.0 £.71 9 11.44 12.5

6.54 10.5 8.81 6 10.4 12.0

5.84 12.25 7.41 7 9.41 11.5

7.03 10.25 7.44 7.25

4.10 11

5.06 9.5

6.71 9.0

• *heft = 1.87"; die radius = 0o, td = 20 mils.

**heft - 1.tiT"; die radius = 5", td = 16.4 mils.

***hef t = 1,'17"; die radius = 8", t d = 16.5 mils.
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undertaken to examine the electrical activity of the various defects present in the

as-grown ribbons. Spreading resistance measurements were done on selected

samples to assess the influence of the defect species on impurity distribution.

1. Crystallinity and orientation studies

Although single crystals have been grown by the EFG technique the

silicon ribbons grown deviate from single crysmllinity. However, the ribbons are

not composed of variously oriented grains separated by high angle grain boundaries.

The sustained growth of long ribbons has been observed to result in an essentially ---.

uniform structure consisting of linear parallel boundaries largely parallel to the

ribbon edges.

The lit, ear defects are postulated to be predominantly twins with some of

the twin boundaries being associated with dislocations. The relatively high densities

: of twin boundaries with the twin planes being normal to the ribbon surface should

result in twin related regions between boundaries. However, X-ray data indicates

that the ribbon surface b.as a predominance of a single orientation. Two possible

mechanisms could account for this observation. If the twinned structure is corn-

: posed of closely spaced twins or twin pairs with the crystal returning to its

! "untwinned" state immediately following the generation of a twin, the resulting

:" structure would consist of a predominance of a single orientation with a sm_l per-

centage of the crystal possessing the twinned orientation. The relatively macro-

scopic sampling procedure of the Laue back reflection technique or the channeling

patterns obtained from an SEM might not detect the twinned orientations between

closely spaced twins. Some preliminary transmission electron microscopy studies

have shown the presence of very closely spaced twins, with twin spacings as low as
O

, 250 A, in these ribbons.

An alternative suggestion is that the linear boundaries are composed of

stacking faults which would not give rise to twin reflections in X-ray micrographs.

In the limit, a stacking fault is equivalent to a twin pair with an extra plane of

atoms (or two extra planes for the diamond cubic structure) between them (for ti_.e

case of extrinsic faults). Figure 98 is a {110} projection of the diamond cubic struc-

ture showing the crystallography of the twin pairs or an extrinsic stacking fault.

Either of the above discussed models can acc.uunt for the observations. However,

attempts to more precisely assign one or ,he other of the mechanisms to explaining

the phenomenon requires further investigation.

85

- i

1977005572-072



IIZ]

l CGROWTH
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-- -- -- TWIN
PLANES

Fig. 28. {110} projerrion of the diamond cubic structure. The dotted
lines represent twin planes. Notice the orientation relation-
ships between the matrix and the twinned region.
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Nucleation of the linear boundaries, whether they be twins or stacking faults,

is very likely to be related to the presence of carbon in the material. The influence

of carbon on the crystallographic quality of both melt grown and vapor deposited

crystals of silicon has been well investigated. (22"24) Carbon has been shown to

generate growth twins, stacking faults and, at high levels of concentration, disloca-

tions and high angle grain boundaries in silicon crystals and films. It has been

suggested that twins observed in epitaxial silicon films are a result of the packing

effects of two extra (C001) SiC planes betw,'en the (111) planes of silicon. The

incorporation of SiC in the form of short chains in the silicon lattice has been

suggested as the nucleating mechanism for defects such as stacking faults. (25' 26)

The closed circles in Fig. 28 suggest the atomic configuration that carbon atoms

could assume in the ribbon resulting in the insertion of extra layers composed of

carbon atoms which then constitute the observed linear boundaries. Whether con-

tin,_ous incorporation of carbon in the form of sheets of atomic dimensions in the

growing crystal is required for the propagation of the observed defect structure is

not known at present. It would indeed be sufficient for carbon or SiC to nucleate the

twins or stacking faults with propagation occurring as a result of growth.

Whereas the major defect types observed in EFG silicon ribbons are twins

(or stacking faults), a small fraction of the structure is composed of linear arrays

of dislocations often associated with the twin boundaries. Figures 2O(a) and 29(h)

show two examples of bands of dislocations. Frequently, deformation induced dislo-

cations are also observed with dislocations piled up against twin boundaries.?

Two likely mechanisms can be invoked to explain the morphology of the dis-

locations. Stress induced or gown-in dislocations can be confined to regions

between twins as shown in Fig. 29. The clustering of the dislocations away from

the twin bands could be a result of image or surface forces of the twin boundaries

exerting a stress on the dislocations resulting in the observed morphology.

Stacking faults can be absorbed by twin boundaries by the displacement of

: a [11_.] during crystal growth. (27) Thistwin planes with a displacement vector of

mechanism would result in stacking faults bound by partial dislocations of the type
a

{112}. A high density of overlapping faults in association with the twins would

result in the observed high density of dislocations proximal to the twins. An

analysis of the nature of the dislocations, i.e., whether the dislocations are of the
a

type _ {1i0} or partial dislocations bounding stacking faults, should shed more light
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Fig. 29. Linear arrays of dislocations, often associated with t_,In
boundaries. Arrays of dislocations between twin boundaries
are stress induced, as shown in (a). In addition, clusters of
dislocations, as seen in (a) and (b) are often obs._rved. TI'.e
region in the immediate neighborhood of the twin Is seen to
be devoid of dislocations.

68

1Q77nn==7_ n?=



on the mechanisms. The attainment of a structure consisting essentially of parallel

twins parallel to the ribbon edges suggests that following the establishment of steady-

state growth conditions tne defect stt_cture -_fthe ribbons essentially reaches a

szeady-state equilibrium configuration.

Crientation experiments inw_lving variously ori rated seeds have been con-

ducted with a view towards determining whether an "equilibrium defect" structure

: develops in EFG ribbons and if so what the effects of seed orientation would be on
the establishment of such a structure.

Table VI lists the seed orientations used as pazt of the investigation. Seeds

with (111) orientations were chosen because (111) planes are the pre,_erre_ twin

planes in diamond cubic materials. 1"has been reported that EFG silico-, ribbons

have a preferred surface orientation of _110)(20) (110) is a low index, high-

symmetry plane. Hence, (110) seeds with different growth directions were chosen.

A ribbon seed was also chosen for comparison with the (110) [211] seed.

Nine ribbon growth runs comprised the growth orientation study - a total of

82 growth attempts were made. The results are characterized below. For the orien-

tation study, the growth process was standardized as nearly as possible. The furnace

arrangement Included an active one-piece ribbon face heater (this, prior to the state-

of-the-art conversion described earlier) as well as the crucible main treater. A

flat molybdenum heat shield sat on insulating stand-offs on the face heater. A two-

piece graphite die with a 12 in. radius of curvature was used for all these orientation

runs. Growth was from a 3 in. diameter quartz crucible contained in a graphite shell.

Detailed growth run data and results are presented in previous Technical Progress

Reports of this program. (
13, 14)

•"_ The following observations were made during growth of these ribbons: the
defect and surface structure of the ribbons are best where the ribbon is growing

stably at full width, and at ,,.0.8 in./mln; ( 110_ [ 111] growth is very active right

after seeding and the structure breaks down dramatically; (111) [110] ; (111) [211] ;

(100) [110] liquid-solid interfaces are unstable and display facetting; (110) [211]

i
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Table VI. Expected Ribbon Surface Orientations and Growth Directions
after Twinning.

Seed Orientation Twinnin_ Plane Orientation after Twinning_

I1 .,.!1_ (114) [1_1]
(Iii) (11o) [lfi]

: (11o) [ill] (iil) (ii4) [_il]
(fii) (11o) [fis]

• i aa I ii I I ml

(n_) (lii) [_ii]
(lil) (12i) [o11]

(loo) [o11] (iil) (1_z) [o11]
(ill) (122) [4i]]

I I Ill _ I _ ] I _

(111) (114) [712]

(11o) [/is] (lil) (11o) [i121
(111) (I14) [172]

" (i11) (alo) [_i]
I i

(111) (ii_) [1io]
(ill) (no) [i1_]

(11o) [rio] (ill) (ii4) [rio]
(1ii) (no) [i14]
1 • a

(111) (iii) [1io]
(lil) (lsl) [i1_]

(111) [rio] (ill) (115) [rio]
(fii) (511) [i14]

II I | I ImHIN I

(nl) (iii) [in]
(ili) (_1) [_.i'q

(an) ilia) (ns)
; (]11) (511) [296]

I i el i i J
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single crystal seeds most commonly lead to growth with twins paraUel to the growth

direction and a smooth interface; the unstable 'oriertation seeking' period between

initiation ot growth and steady-state growth is grea1ly reduced when seeded from

EFG ribbons, effectively (110) [211], containing twins parallel to each other and to

the growth direction (the equilibrium defect structure described below).

A silicon crystal with a known surface orientation, growing along a given

crystallographic direction shows first order twin traces on the ribbon surface such

as those presented in Fig. 30; Table VI lists the ribbon surface orientations and

growth directions following twinning on the appropriate (111) planes for the selected

seed orientations, Such twin traces have been seen in that part of the ribbon which

is proximal to the seed. However, interactions b:t:ween primary twins leads to

higher order twin generation, with a rapid breakdown of the simple matrix-twin

relationships. The crystal achieves the "equilibrium" state wherein a majority of

the linear boundaries lie parallel to each other, and parallel to the direction of

crystal growth.

In order to establish the "equilibrium" orientation, Y-ray Laue patterns were

obtained at points on the _ribbon, one foot and two feet from the seed. The orienta-

tions were determined across th_ ribbon width at eight equidistant points at each

of these regions. As an example, Figs. 31(a) and 31(b) show two X-ray patterns

taken two feet from the seed in ribbons 14-149-3 (seed orientation: (111) _ 110]) and

74-154-3 (seed orientation: (111) [ 21!]1 From patterns such as those in Fig. 31,

it was deduced that the predominant orientation of EFG silicon ribbon approximates

to (110) [ 211]. Fig, 32(a) is a selected area electron channeling pattern (SAECP)

from a region exhibiting the equilibrium structure ano is compared to a similar

pattern from the _110) [ 211] see4 tn Fig. J2 (b). Note the similarities in the

diffraction patterns. This preferred orientation was observed in all the ribbons after

about one foot of growth, trrespective of the seed orientation. Fig. 33 shows the

orientation at the end of 2 feet of growth in sections of various seed orientations.

Note the clustering of ribbon orientation near the (110) pole. The position at which

the equilibrium stracture is established was found to be dependent on the seed

orientation. Figs. 34 and 35 show regions of ribbons near the seed for the (111) [110]

and (111) [ 211] seed orientations, respectively. These show predominantly first

order twin generation. However, the stable defect configuration is not achieved in

these cases till much later in the growth process. In contrast, the stable orientation
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Fig. 30. Schematic of principal twin systems in silicon relative to frequently used
seed and growth orientations. (After Letpold, et al. Proc. 1EEE Photovol-
tatc Spec. Conf. Rec. Uth, 1975).
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Fig, 31. Orientation of ribbon two feet from the seed: (a) seed orientation:
> (III) [II0]; (b) seed orientation: (III)[211]. The predominaut

orientation is close to (l!0) [9.11], irrespective ot seed orientat_cn.
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Fig, 32. Selected area channeling patterns from (a) the equilibrium structure
and (b) (110) [211] seed, Note the similarity in the two patterns,
suggesting that the equilibrium structure Is close to a (110) [211]
orientation.
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Fig. 33. Orientations of ribbons grown from the various seeds. The ribbc_
samples were two feet from Jeed. Spots in stereographic projection
correspond to the ribbon surface orientation. Notice the clustering
near the (110) pole.
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Fig. 34. First order twin generation in ribbon next to _eed (orientation of
seed: (111) [!10]). This seed orientation gives ,'ise to inter-
secting boundarie,q initially. Howev:_r, twin reactions lead to the
generation of parallel ,,_ns and the equilibrium :;tructure, as the
crystal grows. Ar,'ow indicates secd-crystal interface.
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forms immediately after seeding when either the (110) [211] seed or a ribbon seed

is used. Figures 36 and 57 show ribbon starts using such orientation seeds.

In order to further examine the twinning orientations possible, a region close

to the seed was chosen since the initial twin traces should correspond to first order

twins making comparisons with theoretical predictions feasible. The seed orienta-

tion was (111) [ 110]. Figure 38 is an example of such a region. It was found that

the orientation of regions 1 and 2 was (111), while region 3 had a (511) orientation,

Thus region 3 is a first order twin obtained after twinning on the (111) planes.

Regions 1 and 2 have the same orientation. This can be due to (i) both regions

being related in a matrix-twin relation, or (ii) the linear boundary separating the

two areas may be composed of multiple twins. A high ma_-mtficatlon photograph of

: the twinned region does not clearly reveal the multiple-twin nature of the boundary.

In addition to twins and dislocations, discrete particles and clusters of

particles of SiC are also observed in ribbons grown with the use of carbon d_es. (28)

These particles are postulated to be formed as a result of the rejection of super-

saturated carbon by the solidifying liquid, the attendant precipitation of the carbon

in the form of SiC on the die top and the subsequent incorporation of the particles

in the growing ribbon as a result of the particles reaching the solid-liquid interface

and being extracted by the solid. Although by employing a high meniscus, the

incorporation of SiC particles can be minimized in the initial stages of growth, with

sustained growth the particle dimensions eventually approach the dimensions of

the meniscus and partic.ie incoq_oration is resumeO. The influence of the particles

o. the electrical properties of the ribbons has been investigated and it has been

determined that the electrical activity of the particles is largely a function of the

presence of lifetime reducing impurities around them.

2. Electrical c.hara_.teristirs

i With the relatively high density of defects and the presence of lifetime

reducing i_purities the electrical characteristics of EFG ribbons are not comparable

to conventional Czochralski crystals. Typical minority carrier diffusion lengths in

these crystals range from 20 /_M to 70 /uMwith typical Czochralski values being

generally in e-'cess of 100 _M. The importance of these numbers lies not in their

lower magnitudes but in their relative non ur,lformity. The non uniformity of diffusion

: length will impact the yield of the final product. In order to assess the contribution

of the various defect types to the reduction in the diffusion length, a variety of
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Fig. 86. Generation of parallel twin boundaries next to the (110) [211] seed.
Arrows indicate seed-crystal interface. The (110) [211] seed

; orientation gives rise to pa1"allel twins immediately after seeding.
The few intersecting boundaries seen transformp as a result of
twin interactions, into the equilibrium structure as the ribbon
grows.
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Fig. 87. Generation of parallel twin boundaries next to the ribbon seed.
Arrows indicate th_ seed-crystal int'.rface. As can be seen, the
linear boundaries in the seed propagate into the growing ribbon.
Observe some of the intersecting boundaries generating parallel
twins. The structure very quickly attains the equilibrium orien-
tation :_ this case.
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Fig. 88. Region of ribbon near the seed. Seed orientation was (111) [110].
Primary twinning on (111) planes can be seen. Regions 1 and 9
have the same orientation, i.e._ (111), while region 3 has the (511)

_ orientation. These orientations conform to those expected for the
given seed orientation.
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experimental techniques have to be utilized. Details of many of the measurements
made have been presented elsewhere. ( 29-32} In this section a brief discussion of

the electrical activity of the linear boundaries and a disc Jssion of solar cell

characteristics will be presented.

3. Electrical activity of defects

The influence of the linear boundaries on electrical parameters and

solar cell characteristics has been investigated to determine the degree to which

the defects adversely affect the conversion efflciencies of solar cells. (29' 31) A

very effective method for the investigation of the electrical activity of crystallo-

graphic defects in semiconductors is the use of the scanning electron microscope

" operated in the electron beam induced current (EBIC) mode. (33) This technique

has been extensively utilized for the investigation of EFG ribbons. (28' 34) Figures

39 (a) and (b) show examples whereby the EBIC technique permits the imaging of

electrically active defect boundaries. In Fig. 39(a) are shown secondary electron

and EBIC images of a region of a solar cell fabricated in a silicon ribbon. The

secondary electron display shows very little structure on the ribbon surface

whereas the EBIC image shows a number of dark line defects which correspond to

linear boundaries which are electrically active, the dark contrast (or dark-white

contrast) (35) being a result of local recomb!nation of beam generated carriers.

Figure 39(b) shows a magnified EBIC image of another solar ce]l where the two

types of defect boundaries discussed in the previous section are identifiable. Linear

twin boundaries displaying sharp contrast and the arrayed band_Jof dislocations

which also function as regions of strong recombination are observed. The sharply

delineated twin bands are also seen to be associated with dislocations. This ,_act

is more clearly evtdeat in Fig. 40. Figure 40(a) is an EBIC image of a region 3f a

solar cell. A single linear boundary is observed to function as a region of strong

recombination. Figure 40(b) is a secondary electron display of the preferentially

etched _urface of the same region as In (a). The arrows ldent_,fy the electrically

active boundary in the micrographs. In addition to the single e![ectrically active

bo_mdary, a high density of electrically inactive boundaries is observed in (b) with

none of them functioning as recombination centers as evidenco_ by their non-

detectability with the EBIC mode of obser_,ation. Close examir_ation of Fig. 40(b)

permits the distinctio, b¢_ween electrically active and electrically inactive

boundaries to be made. The electrically active boundary is found to be composed of
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Fig. 89, (a) Secondary electron and EBIC images of a solar cell. Note
the lack of structure in the secondary electron image (picture
on the left). Tile same area, in the EBIC rhode, reveals
marked contrast associated with regions of carrier recombi-

:- n,_tion. In (b) are seen two types of defects that lead to strong
recombination: twin bands with associated dislocations, and

j _- dislocation arrays.
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dislocations possibly in association with twins, whereas no dislocations are
4

observed in the vicinity or at the other linear boundaries. Figure 40(c} is a higJicl

magnification secondary electron image of the electrically active bound,_--/ showing

the blgh density of etch pits due to dislocations. Both arrayed dislocations as well

as discrete randomly dispersed dislocations have been observed to reduce the

beam generated current in these crystals whereas the twins are largely

el_ :trically inactive.

The strong recombination contrast observed at the defect boundaries is
am,_,

relate d to defect impurity association at these regions. Although clean, undecorated

dislocations have been postulated to function as donors and acceptors in silicon

it is very unlikely tha. significant recombination can occur in the absence of an

impurity at the dislocations. It has been documented that strong EBIC contrast is

observed only when the defects are associated with impurities. (3_'3T) Consequently

the dislocation arrays which are the primary electrically active defect species in

the ribbons are undoubtedly decorated with a deep level impurity (or impurities)

rendering them electrically active.

With decoJ:ated dtslocatiorm and dislocation arrays being implicated as the

principal lifetime reducing defect types in EFG ribbons, the avenues of approach to

: be followed for quality improvements _1"c discernable. An overall reduction in the

undesirable impurity content in these crystals should result in significant im-

provement. In addition to reducing the impurity content of graphite dies the

approach is largely one of increasing component and machine parity. A reduction

in the dislocation density with particular reference to arrayed dislocations should

also improve electrical quality. The methods to be adopted to reduce the dis-

location density would largely be determined by the mechanisms responsible for

the introduction of dislocations in these crystals. If dislocation generation is

related to thermal stress in the crystals during growth, the establishment of

appropriate thermal environments can reduce the dislocation density. On the other

hand if dislocation introduction is a result of the presence of carbon in the

crystals with perhaps tile dislocations largely being partial dislocations in

association with stacking faults the solution to the problem becomes much less

tractable. Evidence to date, although insufficient, suggests that a significant

fraction of the dislocations are stress induced.
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An unanswered question is the effect of carbon in terms of directly influenc_',g

Che electrical behavior of EFG ribbons. Although carbon, unlike oxygen, is a neutral

impurity in silicon, the high growth rates characteristic of the EI:G process may

result in the occupancy of carbon atoms in other than substitutional sites, or the asso-

ciation of carbon with oxygen, vacancies or other impurities resulting in electrically

active complexes. Further work is required to assess the importance of such effects

if they exist.

4. Impurity. distribution

The large surface to volume ratio of the ribbons and the high vertical

temperature gradients present during growth have an effect on the distribution of the

dopant and impurities through the thickness of the ribbons. In addition, the position

' of the feeds slots in the die which convey the liquid to the die top affect the distribu-

tion of impruities and the dopant across the width of the ribbons. (6) For steady-

state growth with a quiescent liquid and sufficient temperature gradient in the liquid

to re,old constitutional supercooling, each solute will have a concentration profile in

the liquid from a maximum of Co/k ° at the interface, dec-reasing exponentially to Co,i
the concentration in the melt. The concentration decreases to 1/e of its maximum

value at a distan,;e D/Vg from the interface, where D is the diffusion coefficient of

the solute in the liquid and Vg is the growth rate. The question to be resolved is
whether the lateral flow of melt 4_nthe growth film causes any significant lateral

movement of the solute, ei'Jaer impurity or dopant, resulting in concentration

gradier, ts of the solute across the ribbon width oi- through the thickness. Examina-

tion of this effect for various solutes and various die geometries has shown that a

heterogeneous distribution of impurities is possible in EFG ribbons as a result of

liquid flow effects. ( 6 )

In addition to liquid flow effects, solid state diffusion of Impurities to surfaces

(both external and inter_:_l as represented by defects) l q possible. By employing the

surface photovoitage technique ¢ f determining the minority carrier diffusion length

in EFG ribbon solar cells, it has been determined that the minority carrier lifetime

is generally different in the near surface regions of the material as comparexJ to

that in the bulk. (30) Tlals suggests that an impurity gradient through the thickness

can exist in these crystals.

In order to examine the vaxiations in concentration of the impurities almg

the width and through the thickness of ribbons spreading resistance measurements

'> were undertaken.
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A bevel was ground and the surface poli-hed using standard polishing tech-

niques. Tile bevel angle used was 2U52', which leads to an apparent magmtlcation on

the bevelled surface of 23. -l'he length of tile bev:_lled region was typically _ _o 6 mm.

If the thickness of the ribbon is 0.2 to 0 25 mm (0.008 to 0.010 inches), this would "

correspond to approximately 0.2 mm( 0.008 inches) of the thickness of the material

removed. Two types of scans were made:

1. along the ribbon width (approximately 2.54 cm), •

2. across the thickness and along the bevel, with L, C, and R --.

referring to left, center and right scans respectively.

t

The scheme followed is shown in Fig. 41. Probe steps of 10, 25 and 50 gm were

employed; both single- and double-probe scanv v ere used. Carrier copcentration
(38)

was plotted, from Irvin's curves, as a fuact':oa ot distance traversed.

_ Figure 42 shows the carrier concentration in a ribbon grown from unbaked

graphite dies. The ribbon was doped with boron to yield a resistivity of 1 _ -cm,

which corresponds to carrier concent_'ations of 2 × 1016 to 3 x 1016 atoms/cc. The

spreading res:_stance data shows the carrier concentration varying along the ribbon

width by as much a._ two orders of magnitude. This is to be expected in silicon

grown 2rom impure dies, where a preferential segregation of impurities to structural

defects may occur. Use of purified graphite components, reduces the fluctuations

in resistivity (or, carrier concentration), as shown _,nFig, 43. Small fluctuations

in carrier concentration can be decreased by appropriate h'.gh temperature ann._al

• or gettering during solar cell fabrication. Fig. 44(b) shows the profile in a sample

from the same ribbon as in Fig. 44(a), after high temperature (~950"C) junction :,

fabrication leading to the formation of a n+ (phosphorus) layer. The junction depth

was approximately 0.5 /_m observ_ through the mickness of the material.

In o:der to examine the factors responsible for variations of resistivity in '

the materla!, samples were examined by optical microscopy after final polishing :

and after a preferential silicon etch. The region marked on the right in Fig, 42

was re-examined by using 13 /aM probe steps (see Fig. 45a) ; the polished surface

was also observed with an optical microscope. The surface relief in the optical

micrograph of Fig. 45(b) occurs due to the variation in chemical polishing charac-

• tt_rtstics with resistivity. The presence of a grain boundary leads to an increase in
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Fig, 41. Scheme fo!lowexl for spreadil, _resistance measurements. L,
- C and R refer to traces down me bevelled surface, i.e., into

the sample bulk.
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Fig. 44. Spreading resistance profile of as-grown ribbon. (a) shows
the variation in carrier concentration, a_ three places,
along the thickness of ribbon. Solar cell fabrication reduces
the bulk concentration gradient, as seen in (b).
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Fig. 4_, (a) Magnification of spreading resistance plot of right hand
region of Fig. 42. Probe steps are 10 _ apart. (b) shows
surfacereliefon as-pollshedribbonsurface,showing
]_,:esenceofa grainboundary.(c)isthesame areaafter
preferential etching. Notice that not all grain boundaries 82

: cause a chan_e in carrier concentration.
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carrier concentration. Fig. 45(c) shows an optical micrograph of the same ar_a after

preferential etching. Note the presence of grain boundaries and dislocations, which

do not seem to change the resistivity r_arkedly. Thus, not all grain boundaries act

as gettering sites for impurities. However, grain boundaries that do not change the

resistivity appreciably (Fig. 46c) may act as effective recombination sites as evi-

denced in Fig. 46(b), which is a Schottky barrier EBIC scanofthe samearea, preferen-

tially etched, as in Fig. 46(a).

It was observed that the carrier concentration both increased and decreased

near grain boundaries. It is possible that such variations may be due to the differences

in the nature of the grain boundaries. The regions of a ribbon with high dislocation

densities showed a general reduction of the carrier concentration.

E. Problems

None.

F. Plans

Technical milestones for the last six months of this program include achieving

growth rates of 7,5 cm/min (March 31, 197q), growth of 7.5 cm wide ribbon (Feb. 28,

1977), growth of 0.1 mm thick ribbon (Nov. 30, 1976) (Table VII). Emphasis on

achieving the last of these goals is reduced. The programs to achieve high growth

rates and wide ribbon described in the body of this report will continue on Machines

JPL No. 2 and JPL No. 1 respectively. Concurrent studies of ribbon stress, solar

cell characteristics, feasibility of melt replenishment and system purity will supple-

ment the growth efforts.
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Fig. 46. Comparison between defect morphology (a) Schottky barrier
EBIC scan (b) and spreading resistance (c). Crystallographic
defects that act as effective recombination centers do not
necessarily change carrier concentration.
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APPENDICES

1. An Updated Program Plan

Table VII, unchanged.

2. Man Hours and Costs

Previous man hours were 3976 and cost plus fixo_ fee was $142,659.

Man hours for July plus August were 1269 and cost plus fee was $48,587. Man

hours and cost for September are estimated to be 659 and $25_ 645 respectively.

Therefore, third quarter man hours are estimated to be 1928 and cost plus fee

to be $74, 227. Cumulative three quarter man hours and cost plus fixed fee are

estimated to he 5904 and $216, 886, respectively.

3. Engineering Drawings and Sketches Generated during the Reporting
Period

Figures 47-53.

4. Summary of Characterization Data Generated during the Reporting
Per_.od

Spreading _-esistance data on ribbons grown from unpurified dies shows a

large degree of scatter, whereas the use of purified dies results in a more uniform

distribution of resistivity in the ribbons. Correlations have a]__o been obtained among

spreading resistance measurements, EBIC data and optical microscopy.

5. Action Items Requiredby JPL

None

6. New Technology

No reportable items of new technologic.

No cumulative new technology.
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"t_ Review 6f Mach. No. 1

ID
.I:1

Standard Operating procedure for Mach.
2, Mach. No, 2 Mo_.llfled.

Review of Mach. No.

• o

_ _o ._ o _ ,o

• Financial and Technical [reports Solar (:ells anti Samples will he ,lellvercd as per the Ev,llvery Schedule
of this contract.
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